27 research outputs found

    Parametric Estimation of Reference Signal Intensity for Semi-Quantification of Tau Deposition: A Flortaucipir and [18F]-APN-1607 Study

    Get PDF
    BackgroundTau positron emission tomography (PET) imaging can reveal the pathophysiology and neurodegeneration that occurs in Alzheimer’s disease (AD) in vivo. The standardized uptake value ratio (SUVR) is widely used for semi-quantification of tau deposition but is susceptible to disturbance from the reference region and the partial volume effect (PVE). To overcome this problem, we applied the parametric estimation of reference signal intensity (PERSI) method—which was previously evaluated for flortaucipir imaging—to two tau tracers, flortaucipir and [18F]-APN-1607.MethodsTwo cohorts underwent tau PET scanning. Flortaucipir PET imaging data for cohort I (65 healthy controls [HCs], 60 patients with mild cognitive impairment [MCI], and 12 AD patients) were from the AD Neuroimaging Initiative database. [18F]-APN-1607 ([18F]-PM-PBB3) PET imaging data were for Cohort II, which included 21 patients with a clinical diagnosis of amyloid PET-positive AD and 15 HCs recruited at Huashan Hospital. We used white matter (WM) postprocessed by PERSI (PERSI-WM) as the reference region and compared this with the traditional semi-quantification method that uses the whole cerebellum as the reference. SUVRs were calculated for regions of interest including the frontal, parietal, temporal, and occipital lobes; anterior and posterior cingulate; precuneus; and Braak I/II (entorhinal cortex and hippocampus). Receiver operating characteristic (ROC) curve analysis and effect sizes were used to compare the two methods in terms of ability to discriminate between different clinical groups.ResultsIn both cohorts, regional SUVR determined using the PERSI-WM method was superior to using the cerebellum as reference region for measuring tau retention in AD patients (e.g., SUVR of the temporal lobe: flortaucipir, 1.08 ± 0.17 and [18F]-APN-1607, 1.57 ± 0.34); and estimates of the effect size and areas under the ROC curve (AUC) indicated that it also increased between-group differences (e.g., AUC of the temporal lobe for HC vs AD: flortaucipir, 0.893 and [18F]-APN-1607: 0.949).ConclusionThe PERSI-WM method significantly improves diagnostic discrimination compared to conventional approach of using the cerebellum as a reference region and can mitigate the PVE; it can thus enhance the efficacy of semi-quantification of multiple tau tracers in PET scanning, making it suitable for large-scale clinical application

    Brain Network and Abnormal Hemispheric Asymmetry Analyses to Explore the Marginal Differences in Glucose Metabolic Distributions Among Alzheimer's Disease, Parkinson's Disease Dementia, and Lewy Body Dementia

    Get PDF
    Facilitating accurate diagnosis and ensuring appropriate treatment of dementia subtypes, including Alzheimer's disease (AD), Parkinson's disease dementia (PDD), and Lewy body dementia (DLB), is clinically important. However, the differences in glucose metabolic distribution among these three dementia subtypes are minor, which can result in difficulties in diagnosis by visual assessment or traditional quantification methods. Here, we explored this issue using novel approaches, including brain network and abnormal hemispheric asymmetry analyses. We generated 18F-labeled fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) images from patients with AD, PDD, and DLB, and healthy control (HC) subjects (n = 22, 18, 22, and 22, respectively) from Huashan hospital, Shanghai, China. Brain network properties were measured and between-group differences evaluated using graph theory. We also calculated and explored asymmetry indices for the cerebral hemispheres in the four groups, to explore whether differences between the two hemispheres were characteristic of each group. Our study revealed significant differences in the network properties of the HC and AD groups (small-world coefficient, 1.36 vs. 1.28; clustering coefficient, 1.48 vs. 1.59; characteristic path length, 1.57 vs. 1.64). In addition, differing hub regions were identified in the different dementias. We also identified rightward asymmetry in the hemispheric brain networks of patients with AD and DLB, and leftward asymmetry in the hemispheric brain networks of patients with PDD, which were attributable to aberrant topological properties in the corresponding hemispheres

    Argobots: A Lightweight Low-Level Threading and Tasking Framework

    Get PDF
    In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking models, however, either are too specific to applications or architectures or are not as powerful or flexible. In this paper, we present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing a rich set of controls to allow specialization by end users or high-level programming models. We describe the design, implementation, and performance characterization of Argobots and present integrations with three high-level models: OpenMP, MPI, and colocated I/O services. Evaluations show that (1) Argobots, while providing richer capabilities, is competitive with existing simpler generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency-hiding capabilities; and (4) I/O services with Argobots reduce interference with colocated applications while achieving performance competitive with that of a Pthreads approach

    Peripheral Deformation and Buckling of Stainless Steel Hemispherical Shells Compressed by a Flat Plate

    No full text
    Abstract An experimental investigation was performed on stainless steel hemispherical shells under axial compression. Eight kinds of shells with radius-to-thickness ratios that range from 57.1 to 125 were designed and manufactured for this study. The shells were compressed to more than 50% of their radii by a solid flat plate. To avoid contact between the base plate and the deformed central part of the shells, most of the shells were placed on a plate with a hole in the center. Nonetheless, one type of shell was placed on a solid base plate without a hole to analyze the effect of the base plate. As per an observation of collapse modes and load-deformation shell relations, the deformation process of a hemispherical shell that is compressed by a flat plate can be divided into four stages: local flattening (Stage I), axi-symmetric inward dimpling (Stage II), non-symmetric multiple lobes (Stage III), and peripheral deformation and buckling stage (Stage IV). The present study mainly studies Stage IV, which can be categorized into peripheral compression (Stage A), peripheral buckling (Stage B), buckling expanding (Stage C), and overall collapse (Stage D)

    MPI+Threads: runtime contention and remedies

    No full text
    Hybrid MPI+Threads programming has emerged as an alternative model to the “MPI everywhere ” model to better handle the increas-ing core density in cluster nodes. While the MPI standard allows multithreaded concurrent communication, such flexibility comes with the cost of maintaining thread safety within the MPI imple-mentation, typically implemented using critical sections. In contrast to previous works that studied the importance of critical-section granularity in MPI implementations, in this paper we investigate the implication of critical-section arbitration on communication per-formance. We first analyze the MPI runtime when multithreaded concurrent communication takes place on hierarchical memory sys-tems. Our results indicate that the mutex-based approach that most MPI implementations use today can incur performance penalties due to unfair arbitration. We then present methods to mitigate these penalties with a first-come, first-served arbitration and a priority locking scheme that favors threads doing useful work. Through eval-uations using several benchmarks and applications, we demonstrate up to 5-fold improvement in performance

    Radiomics: a novel feature extraction method for brain neuron degeneration disease using F-FDG PET imaging and its implementation for Alzheimer’s disease and mild cognitive impairment

    No full text
    Background: Alzheimer’s disease (AD) is the most common form of progressive and irreversible dementia, and accurate diagnosis of AD at its prodromal stage is clinically important. Currently, computer-aided diagnosis of AD and mild cognitive impairment (MCI) using 18 F-fluorodeoxy-glucose positron emission tomography ( 18 F-FDG PET) imaging is usually based on low-level imaging features or deep learning methods, which have difficulties in achieving sufficient classification accuracy or lack clinical significance. This research therefore aimed to implement a new feature extraction method known as radiomics, to improve the classification accuracy and discover high-order features that can reveal pathological information. Methods: In this study, 18 F-FDG PET and clinical assessments were collected in a cohort of 422 individuals [including 130 with AD, 130 with MCI, and 162 healthy controls (HCs)] from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 44 individuals (including 22 with AD, and 22 HCs) from Huashan Hospital, Shanghai, China. First, we performed a group comparison using a two-sample Student’s t test to determine the regions of interest (ROIs) based on 30 AD patients and 30 HCs from ADNI cohorts. Second, based on two time scans of 32 HCs from ADNI cohorts, we used Cronbach’s alpha coefficient for radiomic feature stability analyses. Pearson’s correlation coefficients were regarded as a feature selection criterion, to select effective features associated with the clinical cognitive scale [clinical dementia rating scale in its sum of boxes (CDRSB); Alzheimer’s disease assessment scale (ADAS)] with 500-times cross-validation. Finally, a support vector machine (SVM) was used to test the ability of the radiomic features to classify HCs, MCI and AD patients. Results: As a result, we identified brain regions which were mainly distributed in the temporal, occipital and frontal areas as ROIs. A total of 168 radiomic features of AD were stable (alpha > 0.8). The classification experiment led to maximal accuracies of 91.5%, 83.1% and 85.9% for classifying AD versus HC, MCI versus HCs and AD versus MCI. Conclusion: The research in this paper proved that the novel approach based on high-order radiomic features extracted from 18 F-FDG PET brain images that can be used for AD and MCI computer-aided diagnosis

    Brain Network and Abnormal Hemispheric Asymmetry Analyses to Explore the Marginal Differences in Glucose Metabolic Distributions Among Alzheimer's Disease, Parkinson's Disease Dementia, and Lewy Body Dementia

    Get PDF
    Facilitating accurate diagnosis and ensuring appropriate treatment of dementia subtypes, including Alzheimer's disease (AD), Parkinson's disease dementia (PDD), and Lewy body dementia (DLB), is clinically important. However, the differences in glucose metabolic distribution among these three dementia subtypes are minor, which can result in difficulties in diagnosis by visual assessment or traditional quantification methods. Here, we explored this issue using novel approaches, including brain network and abnormal hemispheric asymmetry analyses. We generated 18F-labeled fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) images from patients with AD, PDD, and DLB, and healthy control (HC) subjects (n = 22, 18, 22, and 22, respectively) from Huashan hospital, Shanghai, China. Brain network properties were measured and between-group differences evaluated using graph theory. We also calculated and explored asymmetry indices for the cerebral hemispheres in the four groups, to explore whether differences between the two hemispheres were characteristic of each group. Our study revealed significant differences in the network properties of the HC and AD groups (small-world coefficient, 1.36 vs. 1.28; clustering coefficient, 1.48 vs. 1.59; characteristic path length, 1.57 vs. 1.64). In addition, differing hub regions were identified in the different dementias. We also identified rightward asymmetry in the hemispheric brain networks of patients with AD and DLB, and leftward asymmetry in the hemispheric brain networks of patients with PDD, which were attributable to aberrant topological properties in the corresponding hemispheres

    Research on the Mechanical Behavior of Buried Double-Wall Corrugated Pipes

    No full text
    The mechanical behavior of buried HDPE double-wall corrugated pipes is mainly affected by the material and the structure of the pipe wall. Here we studied a peculiar material that added fly ash (FA) in high density polyethylene (HDPE) to develop composites. We have conducted research on FA/HDPE composites with different mix proportions. When 5% compatibilizer was added to the 10% FA masterbatch/HDPE composite, the Young’s Modulus of FA/HDPE composite was higher. This paper mainly studies the mechanical behavior of the structure of pipe walls for materials with this proportion of the ingredients. The mechanical behavior of double-wall corrugated pipes with different ratios of interior and exterior wall thicknesses is studied by keeping the sum of the interior and exterior wall thicknesses unchanged. Pipes with six different ratios of interior and exterior wall thicknesses are simulated; the results show that the strain of crest and liner gradually decreased and the valley strain gradually increased with the increase of the exterior wall thickness. By comparing inner and outer wall thickness ratios from 0.67 to 2.33, it is found that the structural performance and economic advantage for the double-wall corrugated pipes is best when the thickness ratio of the interior wall and the exterior wall is controlled to be from 1.3 to 1.8. This paper expounds the deformation mechanism of double-wall corrugated pipes from the perspective of mechanical behavior and structural characteristics, and provides a reference for material selection and structural design of double-wall corrugated pipes
    corecore